Maths

For today's work, we're going to do some work on reading weights off of scales measuring grams (g) and kilograms (kg).

There are 3 columns - A, B and C and there are two parts on each question, where the two arrows are on the scale.

In your home learning book, I would like you to choose and complete 8 questions (they can be from any of the columns).

Example:
So, if I choose to do the first question of column A, then question 3 of column B and then question 5 of column A, that's fine but I would lay it out like this:

A1 (a) answer (the first arrow on the scale)
(b) answer (the second arrow on the scale)

B3 (a) answer
(b) answer

A5 (a) answer
(b) answer

MEASURING WEIGHT

TARGET To use a range of scales to measure weight.

Work out the measurement shown by each arrow.
(1)

3

$$
9 \begin{array}{ccccc}
0 & 200 & 400 & 600 & 800 \\
\hline
\end{array}
$$

4 $\begin{array}{ccccc}30 & 40 & 59 & 60 & 70 \\ \mathrm{ky} & 1 & 1 & 1 & 1\end{array}$

3 | 1 | 20 | 40 | 60 |
| :--- | :--- | :--- | :--- |
| | 1 | 1 | 100 |

6
(0) 200 *00 6001001000 $9 L$
$(2 \mathrm{~kg}$
$\frac{1}{2}+\frac{1}{4}-\frac{1}{11}-\frac{1}{30}$

8 ko

$$
\frac{1}{20} \frac{1}{30}-\frac{1}{40}-\frac{1}{50}
$$

99
$\frac{1}{500} \frac{1}{500600} \frac{1}{700}-\frac{1}{400}$

3
(7) $0^{0} \mathrm{~m}_{1}^{1} \quad 1 \quad 2_{1}^{3} \quad 4$
(2) $\begin{array}{ccccc}0 & 50^{+} & 100 & 150^{+} & 200 \\ 9 & 1 & 1 & 1 & 1\end{array}$
(3) $\begin{array}{ccccccc}4 & 100 & 200 & 300 & 400 \\ 9 & 1 & 1 & 1 & 1 & 1\end{array}$
(4) $\log _{20}^{1} 140 \quad 60 \quad 80$
(5) $\begin{array}{lllllll}1 & & 1 & 1 & \\ 0 & 40 & 80^{\prime} & 120 & 160 & 200 \\ 9 & 1 & 1 & 1 & 1 & 1\end{array}$

6

(7) 4

$$
\frac{1}{24} \frac{1}{26} \cdot \frac{1}{32}+\frac{1}{36}+\frac{1}{40}
$$

(8) 4

$$
\frac{1}{5} \frac{1}{6} \frac{1}{7}+\frac{1}{9}+\frac{1}{76}
$$

9.9

8
 (1)

2

3

4 kg 1

(5)

6
0

$(7 \log$

$$
\frac{1}{2}+1+\frac{1}{3}+\frac{1}{4}
$$

8
$\frac{91}{\frac{111+1}{500} 600}+\frac{1}{700}$

9 kg
$\frac{\operatorname{kg}}{\frac{2}{37}-\frac{1}{38}+\frac{1}{39}}$

