Adding and subtracting

$4.72 \quad 9.35 \quad 1.99 \quad 3.05 \quad 11.21$

1 Choose two or three card numbers with a total as close to 10 as possible.

4•72, $1.99,3.05$ (total $=9.76$)

2 Choose two card numbers with a difference as close to 2 as possible.

$$
q \cdot 35,1|\cdot 2| \text { (difference }=1 \cdot 86 \text {) }
$$

```
Are you certain you got as close as possible?
```

3 Find the missing digits. None of the missing digits are the same.

Perfect percentages

Find each percentage.
(4) 50% of $32=16$
(6) 40% of $45=18$
(8) 1% of $500=5$
(5) 10% of $50=5$
(7) 5% of $120=6$
(9) 20% of $15=$ 3

10 Each answer above matches a letter in the alphabet, so $a=1, b=2$, $\mathrm{c}=3$, and so on. Find the letters to make a word. There is a letter missing from the end of the word. What is it?
$16=P, 5=\mathrm{E}, \mathrm{I} 8=\mathrm{R}, 6=\mathrm{F}, 5=\mathrm{E}, 3=\mathrm{C}$
T is the missing letter. The word is PERFECT.
\qquad

Solving problems

(11) $20 \div(100-96)=5$
(12) $7 \times(132-33)=693$

Write the value of each letter.

(13 $67-\mathrm{n}=32$, so $\mathrm{n}=$| 35 |
| :---: |
| (14) $13 \times m=52$, so $m=4$ |

(16) $4 \times \mathrm{t}=\mathrm{I} 20$, so $\mathrm{t}=30$
(17) $w-16=42$, so $w=58$
(15) $\mathrm{s} \div 6=5$, so $\mathrm{s}=30$

18 Write the length of the missing side.

4 cm | $n \mathrm{~cm}$ |
| :---: |
| Area $=42 \mathrm{~cm}^{2}$ |

Letters and numbers challenge!

19 Find a pair of numbers that works in both of these number sentences.

$$
\begin{array}{rl}
(m+n) \times 5=35 & \text { and } \\
m=24 \div m=17-n \\
m & n=5
\end{array}
$$

I found this:
(:) Easy $\because \because$ Challenging I needed help

