

Using place value

Count in Is

e.g. 45 + I

Count in IOs

e.q. 45 + 10 without counting on in Is

34	35	36
44/		46
54	55	56

Year 1

Add 10 to any given 2-digit number

Counting on

Count on in Is e.g. 8 + 3 as 8, 9, 10, 11

Add, putting the larger number first Count on in IOs

e.g. 45 + 20 as 45, 55, 65

Using place value

Know I more or I0 more than any number

e.g. I more than 67

e.g. 10 more than 85

Partitioning

e.g. 55 + 37 as 50 + 30 and 5 + 7, then finally combine the two totals: 80 + I2

Year 2

Counting on

Add 10 and multiples of 10 to a given I- or 2-digit number e.g. 76 + 20 as 76, 86, 96 or in one hop: 76 + 20 = 96 Add two 2-digit numbers by counting on in 10s, then in Is e.g. 55 + 37 as 55 + 30 (85) + 7 = 92

Add near multiples of 10

e.g. 46 + 19

e.g. *63* + *21*

Mental Addition

Using number facts

'Story' of 4, 5, 6, 7, 8 and 9 e.q. 7 = 7 + 0, 6 + 1, 5 + 2, 4 + 3

Number bonds to 10

e.q. 5 + 5, 6 + 2, 7 + 3, 8 + 2, 9 + 1, 10 + 0

Year 1

4 + 6 = 10

Use patterns based on known facts when adding e.g. 4 + 3 = 7 so we know 24 + 3, 44 + 3, 74 + 3

Year 2

Using number facts

Know pairs of numbers which make the numbers up to and including I2

e.g.
$$8 = 4 + 4$$
, $3 + 5$, $2 + 6$, $1 + 7$, $0 + 8$

e.g.
$$10 = 5 + 5$$
, $4 + 6$, $3 + 7$, $2 + 8$, $1 + 9$, $0 + 10$

Use patterns based on known facts when adding

e.g.
$$6 + 3 = 9$$
, so we know $36 + 3 = 39$, $66 + 3 = 69$, $56 + 3 = 59$

Bridging 10

e.g.
$$57 + 5 = 57 + 3 (60) + 2 = 62$$

Add three or more I-digit numbers, spotting bonds to IO or doubles

e.g.
$$3 + 5 + 3 = 6 + 5 = II$$

e.g.
$$8 + 2 + 4 = 10 + 4 = 14$$

Using place value

Count back in Is

e.q. *Know 53 – I*

Count back in IOs

e.g. Know 53 – 10 without counting back in Is

32	33	34
42	43	44
52 /		54

Year 1

Taking away

Count back in Is

e.g. II - 3 as II, I0, 9, 8

e.g. 14 - 3 as 14, 13, 12, 11

Count back in 10s e.g. 53 – 20 as 53, 43, 33

Using place value

Know I less or IO less than any number

e.g. I less than 74

e.g. 10 less than 82

Partitioning

e.g. 55 - 32 as 50 - 30 and 5 - 2 and combine the answers: 20 + 3

Taking away

Subtract IO and multiples of IO

e.g. 76 - 20 as 76, 66, 56 or in one hop: 76 - 20 = 56

Subtract two 2-digit numbers by counting back in IOs, then in Is $\,$

e.g. 67 – 34 as 67 subtract 30 (37) then count back 4 (33)

Subtract near multiples of 10

e.g. 74 - 21

e.q. 57 – 19

Year 1

Using number facts

'Story' of 4, 5, 6, 7, 8 and 9

e.g. 'Story' of 7 is
$$7 - 1 = 6$$
, $7 - 2 = 5$, $7 - 3 = 4$

Number bonds to 10

e.g.
$$10 - 1 = 9$$
, $10 - 2 = 8$, $10 - 3 = 7$

10 - 7 = 3

Subtract using patterns of known facts

e.g.
$$7 - 3 = 4$$
 so we know $27 - 3 = 24$, $47 - 3 = 44$, $77 - 3 = 74$

Year 2

Using number facts

Know pairs of numbers which make the numbers up to and including I2 and derive related subtraction facts

e.g.
$$10 - 6 = 4$$
, $8 - 3 = 5$, $5 - 2 = 3$

Subtract using patterns of known facts

e.g.
$$9 - 3 = 6$$
, so we know $39 - 3 = 36$, $69 - 3 = 66$, $89 - 3 = 86$

Bridging 10

e.g.
$$52 - 6$$
 as $52 - 2$ (50) $- 4 = 46$

Counting up

Find a difference between two numbers on a line where the numbers are close together

Year 1 Year 2 **Counting in steps ('clever' counting)** Counting in steps ('clever' counting) Count in 2s Count in 2s, 5s and 10s Mental Multiplication Count in IOs q Ш Begin to count in 3s **Doubling and halving** Begin to know doubles of multiples of 5 to 100 e.g. double 35 is 70 Begin to double 2-digit numbers less than 50 with Is digits of

I, 2, 3, 4 or 5

qı

q3

qq

Overview of Strategies and Methods - Multiplication (Draft) Year 1 Year 2 **Doubling and halving Grouping** Find doubles to double 5 using fingers Use arrays to find answers to multiplication and relate to 'clever' counting e.g. double 3 e.g. 3×4 as three lots of four things e.g. 6×5 as six steps in the 5s count as well as six lots of five Mental Multiplication

Understand that 5×3 can be worked out as three 5s or five 3s

Year 1

Counting in steps ('clever' counting)

Count in 2s

Count in IOs

1	2	3	4	5	6	7	8	q	F
П	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
qı	92	93	94	95	96	97	98	qq	100

Doubling and halving

Find half of even numbers up to I2, including realising that it is hard to halve an odd number

Year 2

Counting in steps ('clever' counting)

Count in 2s, 5s and 10s

Begin to count in 3s

Doubling and halving

Find half of numbers up to 40, including realising that half of an odd number gives a remainder of I or an answer containing a $\frac{1}{2}$ e.g. $\frac{1}{2}$ of $II = 5\frac{1}{2}$

Begin to know half of multiples of 10 to 100 e.g. half of 70 is 35

Year 1

Grouping

Begin to use visual and concrete arrays and 'sets of' objects to find the answers to questions such as 'How many towers of three can I make with twelve cubes?'

Sharing

Begin to find half of a quantity using sharing e.g. find half of 16 cubes by giving one each repeatedly to two children

Grouping

Relate division to multiplication by using arrays or towers of cubes to find answers to division

Year 2

e.g. 'How many towers of five cubes can I make from twenty cubes?' as $_ \times 5 = 20$ and also as $20 \div 5 = _$

Relate division to 'clever' counting and hence to multiplication e.g. 'How many fives do I count to get to twenty?'

Sharing

Begin to find half or a quarter of a quantity using sharing

e.g. find a quarter of 16 cubes by sorting the cubes into four piles

Find $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$ of small quantities

1/2		1/2		
1/4	1/4	1/4	1/4	

Using number facts

Know half of even numbers to 24 Know ×2, ×5 and ×10 division facts Begin to know ×3 division facts