	Year 1	Yecr 2
¢	Using place value Count in Is $\text { e.g. } 45+1$ Count in IOs e.g. $45+10$ without counting on in Is Add 10 to any given 2-digit number Counting on Count on in Is e.g. $8+3$ as $8,9,10,11$ Add, putting the larger number first Count on in IOs $\text { e.g. } 45+20 \text { as } 45,55,65$	Using place value Know I more or 10 more than any number e.g. I more than 67 e.g. 10 more than 85 Partitioning e.g. $55+37$ as $50+30$ and $5+7$, then finally combine the two totals: $80+12$ Counting on Add 10 and multiples of 10 to a given 1 - or 2-digit number e.g. $76+20$ as $76,86,96$ or in one hop: $76+20=96$ Add two 2-digit numbers by counting on in 10 s , then in Is e.g. $55+37$ as $55+30(85)+7=92$ Add near multiples of 10 e.g. $46+19$ e.g. $63+21$

	Year 1	Year 2
-	Using number facts 'Story' of $4,5,6,7,8$ and 9 $\text { e.g. } 7=7+0,6+1,5+2,4+3$ Number bonds to 10 $\text { e.g. } 5+5,6+2,7+3,8+2,9+1,10+0$ Use patterns based on known facts when adding e.g. $4+3=7$ so we know $24+3,44+3,74+3$	Using number facts Know pairs of numbers which make the numbers up to and including 12 $\begin{aligned} & \text { e.g. } 8=4+4,3+5,2+6,1+7,0+8 \\ & \text { e.g. } 10=5+5,4+6,3+7,2+8,1+9,0+10 \end{aligned}$ Use patterns based on known facts when adding e.g. $6+3=9$, so we know $36+3=39,66+3=69,56+3=59$ Bridging 10 $\text { e.g. } 57+5=57+3(60)+2=62$ Add three or more I-digit numbers, spotting bonds to 10 or doubles $\begin{aligned} & \text { e.g. } 3+5+3=6+5=11 \\ & \text { e.g. } 8+2+4=10+4=14 \end{aligned}$

Year 1

Using place value

Count back in Is
e.g. Know 53 - I

Count back in 10 s
e.g. Know 53 - 10 without counting back in Is

32	33	34
42	43	44
52	N̈0	54

Taking away
Count back in Is
e.g. II - 3 as II, IO, 9, 8
e.g. 14 - 3 as $14,13,12$, 11

Count back in 10 s
e.g. $53-20$ as 53, 43, 33

Year 2

Using place value

Know I less or 10 less than any number
e.g. I less than 74
e.g. 10 less than 82

Partitioning
e.g. $55-32$ as $50-30$ and $5-2$ and combine the answers: $20+3$

Taking away

Subtract 10 and multiples of 10
e.g. $76-20$ as $76,66,56$ or in one hop: $76-20=56$

Subtract two 2-digit numbers by counting back in 10 s, then in Is e.g. 67 - 34 as 67 subtract 30 (37) then count back 4 (33)

Subtract near multiples of 10
e.g. $74-21$
e.g. $57-19$

	Year 1	Yecr 2
	Using number facts 'Story' of 4, 5, 6, 7, 8 and 9 e.g. 'Story' of 7 is $7-I=6,7-2=5,7-3=4$ Number bonds to 10 $\text { e.g. } 10-1=9,10-2=8,10-3=7$ $10-7=3$ Subtract using patterns of known facts e.g. $7-3=4$ so we know $27-3=24,47-3=44,77-3=74$	Using number facts Know pairs of numbers which make the numbers up to and including 12 and derive related subtraction facts $\text { e.g. } 10-6=4,8-3=5,5-2=3$ Subtract using patterns of known facts e.g. $9-3=6$, so we know $39-3=36,69-3=66,89-3=86$ Bridging 10 $\text { e.g. } 52-6 \text { as } 52-2(50)-4=46$ Counting up Find a difference between two numbers on a line where the numbers are close together $\text { e.g. } 51-47$

Doubling and halving
Find doubles to double 5 using fingers
e.g. double 3

Grouping
Begin to use visual and concrete arrays and sets of objects to find
the answers to 'three lots of four' or 'two lots of five'
e.g. three lots of four
Know doubles to double 20
e.g. double 7 is 14

	Year 1	Year 2
	Grouping Begin to use visual and concrete arrays and 'sets of' objects to find the answers to questions such as 'How many towers of three can I make with twelve cubes?' Sharing Begin to find half of a quantity using sharing e.g. find half of 16 cubes by giving one each repeatedly to two children	Grouping Relate division to multiplication by using arrays or towers of cubes to find answers to division e.g. 'How many towers of five cubes can I make from twenty cubes?' as _ $\times 5=20$ and also as $20 \div 5=$ _ Relate division to 'clever' counting and hence to multiplication e.g. 'How many fives do I count to get to twenty?' Sharing Begin to find half or a quarter of a quantity using sharing e.g. find a quarter of 16 cubes by sorting the cubes into four piles Find $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$ of small quantities Using number facts Know half of even numbers to 24 Know $\times 2, \times 5$ and $\times 10$ division facts Begin to know $\times 3$ division facts

