

Using place value

Count in 100s

e.g. Know 475 + 200 as 475, 575, 675

Year 3

Add multiples of IO, IOO and £I

e.g. 746 + 200

e.q. 746 + 40

e.q. £6·34 + £5 as £6 + £5 and 34p

Partitioning

e.g. f8.50 + f3.70 as f8 + f3 and 50p + 70p and combine the totals: fII + fI.20

e.g. 347 + 36 as 300 and 40 + 30 and 7 + 6 and combine the totals: 370 + 13 = 383

e.g. 68 + 74 as 60 + 70 and 8 + 4 and combine the totals: I30 + I2 = I42

Using place value

Count in 1000s

e.g. Know 3475 + 2000 as 3475, 4475, 5475

Partitioning

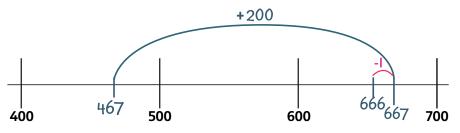
e.g. 746 + 40

e.g. 746 + 203 as 700 + 200 and 6 + 3

e.g. 134 + 707 as 100 + 700 and 4 + 7

Counting on

Add 2-digit numbers to 2-, 3- and 4-digit numbers by adding the multiple of 10 then the Is


Year 4

e.g. 167 + 55 as 167 + 50 (217) + 5 = 222

Add near multiples of 10, 100 and 1000

e.g. 467 + 199

e.g. 3462 + 2999

Count on to add 3-digit numbers and money

e.g. 463 + 124 as 463 + 100 (563) + 20 (583) + 4 = 587

e.g. £4·67 + £5·30 as £9·67 + 30p

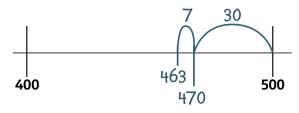
Year 3 **Counting on** Add two 2-digit numbers by adding the multiple of IO, then the Is e.g. 67 + 55 as 67 + 50 (117) + 5 = 122Add near multiples of 10 and 100 e.q. 67 + 39 e.g. 364 + 199 Add pairs of 'friendly' 3-digit numbers e.q. 548 + 120 Mental Addition Count on from 3-digit numbers e.g. 247 + 34 as 247 + 30 (277) + 4 = 281 **Using number facts** Know pairs which total each number to 20 e.q. 7 + 8 = 15e.q. 12 + 6 = 18

Number bonds to 100

Add to the next 10 and the next 100

e.g.
$$176 + 4 = 180$$

e.g.
$$435 + 65 = 500$$


Year 4

Using number facts

Number bonds to 100 and to the next multiple of 100

e.q.
$$288 + 12 = 300$$

e.g.
$$463 + 37 = 500$$

Number bonds to £I and to the next whole pound

e.g.
$$63p + 37p = £I$$

e.g.
$$f3.45 + 55p = f4$$

Add to the next whole number

	V	V		
	Year 3	Year 4		
	Build on partitioning to develop expanded column addition with two 3-digit numbers e.g. 466 + 358	Build on expanded column addition to develop compact column addition with larger numbers e.g. 1466 + 4868		
	400 60 6 + 300 50 8 700 110 14 = 824	1000 400 60 6 4000 800 60 8 + 1000 100 10 6000 300 30 4		
	Use expanded column addition where digits in a column add to more than the column value	0000 300 4		
written Addition	e.g. 466 + 358 400 60 6 300 50 8 + 100 10 800 20 4 Compact column addition with two or more 3-digit numbers or towers of 2-digit numbers	Compact column addition with larger numbers e.g. 5347 + 2286 + 1495 5347 2286 + 1495 121 9128		
W	e.g. 347 + 286 + 495 347 286 + 495 21 1128	Use expanded and compact column addition to add amounts of money Add like fractions e.g. $\frac{3}{8} + \frac{1}{8} + \frac{1}{8}$		
	Compact column addition with 3- and 4-digit numbers Recognise like fractions that add to I e.g. $\frac{1}{4} + \frac{3}{4}$ e.g. $\frac{3}{5} + \frac{2}{5}$			

Using place value

Count in 0·ls, 0·0ls

e.g. Know what 0·I more than 0·5I is

IOs	IOs Is		0.01s	
	0	5	I	

Year 5

Partitioning

Addition

Mental

e.g. 2.4 + 5.8 as 2 + 5 and 0.4 + 0.8 and combine the totals: 7 + 1.2 = 8.2

0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0·q	I
ŀŀ	I·2	I·3	1.4	I·5	I·6	1.7	1.8	١٠q	2
2∙I	2.2	2·3	2·4	2.5	2.6	2.7	2.8	2.9	3
3∙I	3.2	3.3	3·4	3.5	3.6	3.7	3.8	3·9	4
4·I	4.2	4.3	4·4	4.5	4.6	4.7	4.8	4·9	5
5∙I	5.2	5·3	5·4	5.5	5·6	5.7	5·8	5·9	6
6·I	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6·9	7
7∙I	7.2	7:3	7·4	7:5	7.6	7.7	7.8	7.9	8
8·I	8·2	8.3	8·4	8.5	8.6	8.7	8.8	8·9	q
٩٠I	q·2	q.3	q·4	q. ₅	q.6	q. ₇	q.8	q.q	10

Using place value

Count in 0·ls, 0·0ls, 0·00ls

e.g. Know what 0.001 more than 6.725 is

Partitioning

e.g. 9.54 + 3.23 as 9 + 3, 0.5 + 0.2 and 0.04 + 0.03, to give 12.77

Year 6

Counting on

Add two decimal numbers by adding the Is, then the $0\cdot Is/0\cdot 0Is/0\cdot 00Is$

e.g. 6.314 + 3.006 as 6.314 + 3 (9.314) + 0.006 = 9.32

Add near multiples of I

e.g. 6·345 + 0·999

e.g. 5·673 + 0·9

Count on from large numbers

e.g. 16375 + 12003 as 28375 + 3

	Year 5	Year 6
Mental Addition	Counting on Add two decimal numbers by adding the Is, then the 0·Is/0·0Is e.g. 5·72 + 3·05 as 5·72 + 3 (8·72) + 0·05 = 8·77 Add near multiples of I e.g. 6·34 + 0·99 e.g. 5·63 + 0·9 Count on from large numbers e.g. 6834 + 3005 as 9834 + 5 Using number facts Number bonds to I and to the next whole number e.g. 5·7 + 0·3 e.g. 0·4 + 0·6	Using number facts Number bonds to I and to the next multiple of I e.g. 0·63 + 0·37 e.g. 2·355 + 0·645 Add to the next I0 e.g. 4·62 + 5·38
	Add to the next I0 from a decimal number e.g. 7·8 + 2·2 = I0	

	Year 5	Year 6
written Addition	Expanded column addition for money leading to compact column addition for adding several amounts of money e.g. £14·64 + £28·78 + £12·26 £14 60p 4p £28 70p 8p + £12 20p 6p £1 10p £55 60p 8p Compact column addition to add pairs of 5-digit numbers Continue to use column addition to add towers of several larger numbers Use compact addition to add decimal numbers with up to 2 decimal places e.g. 15·68 + 27·86 15·68 + 27·86 11·1 43·54	Compact column addition for adding several large numbers and decimal numbers with up to 2 decimal places Compact column addition with money e.g. $f \mid 4.64 + f \mid 28.78 + f \mid 2.26$ $f \mid 4.64 + f \mid 28.78 + f \mid 2.26 + f \mid 2.26 + f \mid 2.26 + f \mid 3.66 + f \mid 2.26 + f \mid 3.66 + f \mid$
	Add related fractions e.g. $\frac{3}{4} + \frac{1}{8} = \frac{7}{8}$	

Taking away

Use place value to subtract

Year 3

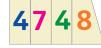
Take away multiples of IO, IOO and £I

e.g.
$$476 - 40 = 436$$

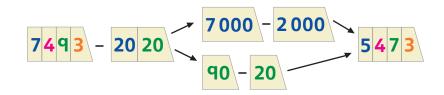
e.g.
$$476 - 300 = 176$$

e.q
$$f4.76 - f2 = f2.76$$

Partitioning



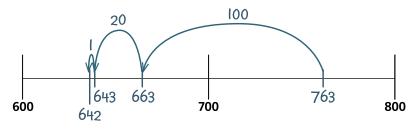
Taking away


Use place value to subtract

Year 4

Take away multiples of 10, 100, 1000, £1, 10p or 0·1

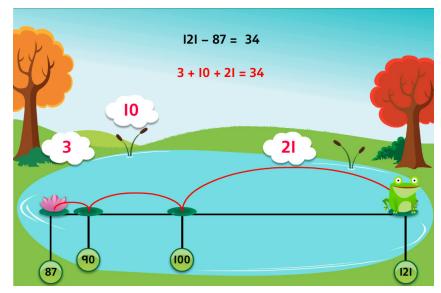
Partitioning



Count back

Subtract near multiples of 10, 100, 1000 or £1

Count back in 100s, 10s then Is

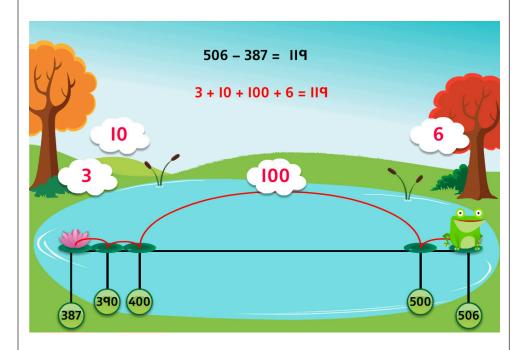

Subtract near multiples of 10 and 100

e.g. 648 - 199

e.g. 86 – 39

Counting up

Find a difference between two numbers by counting up from the smaller to the larger


Year 4

Counting up

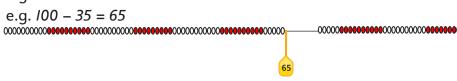
Find a difference between two numbers by counting up from the smaller to the larger

e.q. 506 - 387

e.g. 4000 - 2693

Subtraction Mental

Subtraction Written

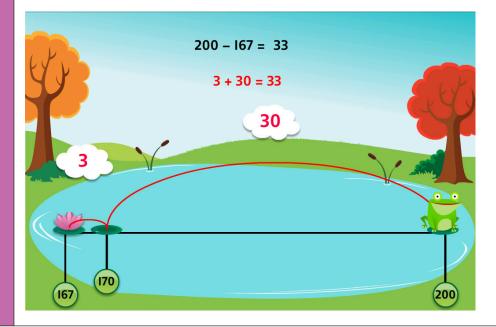

Using number facts

Know pairs which total each number to 20

e.g.
$$20 - 14 = 6$$

Number bonds to 100

e.g.
$$100 - 48 = 52$$

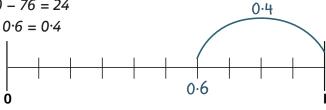


Year 3

Subtract using number facts to bridge back through a 10

e.g.
$$42 - 5 = 42 - 2$$
 (40) $- 3 = 37$

Develop counting up subtraction e.g. 200 - 167


Year 4

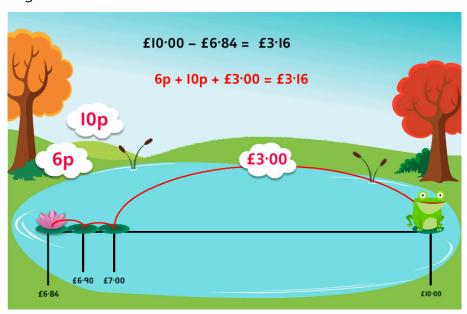
Using number facts

Number bonds to 10 and 100 and derived facts

e.q.
$$100 - 76 = 24$$

e.g.
$$I - 0.6 = 0.4$$

Number bonds to £1 and £10


e.g.
$$£I.00 - 86p = I4p$$

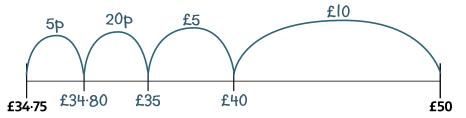
e.g.
$$f10.00 - f3.40 = f6.60$$

Expanded column subtraction with 3- and 4-digit numbers e.g. 726 - 358

Begin to develop compact column subtraction e.g. 726 - 358

Use counting up subtraction to find change from £1, £5 and £10 e.g. £10.00 - £6.84

Recognise complements of any fraction to I


e.g.
$$I - \frac{1}{4} = \frac{3}{4}$$

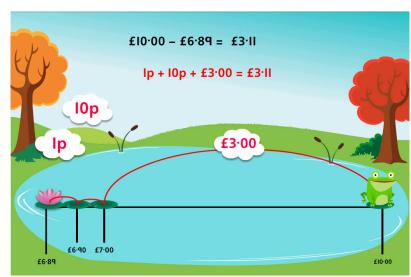
e.g.
$$1 - \frac{3}{5} = \frac{2}{5}$$

Year 4

Use counting up subtraction to find change from £10, £20, £50 and £100 $\,$

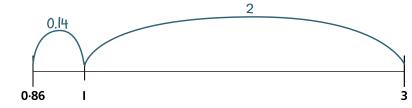
e.g. Buy a computer game for £34·75 using £50

Subtract like fractions


e.g.
$$\frac{3}{8} - \frac{1}{8} = \frac{2}{8}$$

	Overview of Strategies and Methods - Subtraction (Draft)						
	Year 5	Year 6					
Mental Subtraction	Taking away Use place value to subtract decimals e.g. $4:58 = 0.08$ e.g. $6:26 = 0.2$ Take away multiples of powers of IO e.g. $15672 = 300$ e.g. $4:82 = 2$ e.g. $2:71 = 0.5$ e.g. $4:68 = 0.02$ Partitioning or counting back e.g. $3964 = 1051$ e.g. $5:72 = 2:01$ Subtract near multiples of I, IO, IOO, IOOO, IO 000 or £I e.g. $86456 = 9999$ e.g. $3:58 = 1:99$ Counting up Find a difference between two numbers by counting up from the smaller to the larger e.g. £12:05 = £9:59 e.g. $2009 = 869$	Taking away Use place value to subtract decimals e.g. 7·782 – 0·08 e.g. 16·263 – 0·2 Take away multiples of powers of I0 e.g. 132 956 – 400 e.g. 686 109 – 40 000 e.g. 7·823 – 0·5 Partitioning or counting back e.g. 3964 – 1051 e.g. 5·72 – 2·01 Subtract near multiples of powers of I0 e.g. 360 078 – 99 998 e.g. 12·831 – 0·99					

Find change using shopkeepers' addition e.g. Buy a toy for £6.89 using £10.00



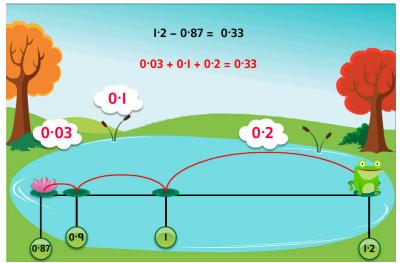
Find a difference between two amounts of money by counting up

Using number facts

Derived facts from number bonds to 10 and 100

e.g.
$$2 - 0.45$$
 using $45 + 55 = 100$

Number bonds to £1, £10 and £100

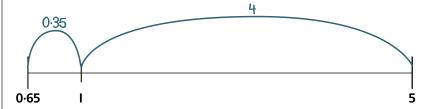

e.g. £4·00 - £3·86

e.q. £100 - £66 using 66 + 34 = 100

Counting up

Find a difference between two decimal numbers by counting up from the smaller to the larger

Year 6

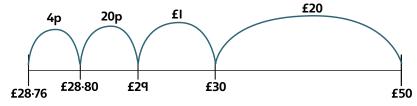


Using number facts

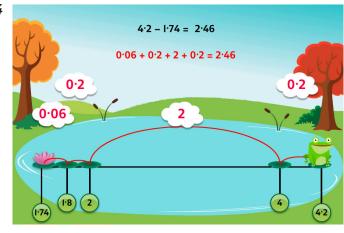
Derived facts from number bonds to 10 and 100

e.g.
$$0.1 - 0.075$$
 using $75 + 25 = 100$

e.g.
$$5 - 0.65$$
 using $65 + 35 = 100$


Number bonds to £1, £10 and £100

e.g. £100 - £66.20 using 20p + 80p = £1 and £67 + £33 = £100



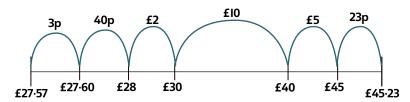
Compact column subtraction for numbers with up to 5 digits e.g. *16 324 – 8516*

Continue to use counting up subtraction for subtractions involving money, including finding change

Use counting up subtraction to subtract decimal numbers

Subtract related fractions

e.g.
$$\frac{3}{4} - \frac{1}{8} = \frac{5}{8}$$


NB Counting up subtraction provides a default method for ALL children

Year 6

Compact column subtraction for large numbers

Use counting up for subtractions where the larger number is a multiple or near multiple of 1000 or 10 000

Use counting up subtraction when dealing with money

Use counting up subtraction to subtract decimal numbers

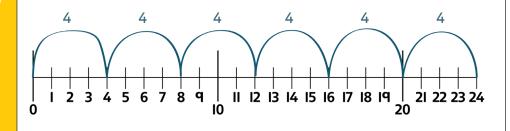
e.g.
$$|3\cdot| - 2\cdot37$$

Subtract unlike fractions, including mixed numbers

e.g.
$$\frac{3}{4} - \frac{1}{3} = \frac{5}{12}$$

e.g.
$$2\frac{3}{4} - I\frac{1}{3} = I\frac{5}{12}$$

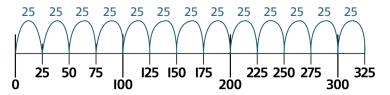
NB Counting up subtraction provides a default method for ALL children


- - ---

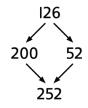
Counting in steps ('clever' counting)

Count in 2s, 3s, 4s, 5s, 8s and 10s

I	2	3	4	5	6	7	8	q	10
II	12	13	14	15	16	17	18	Ι٩	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100


Year 3

Counting in steps (sequences)

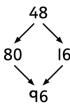

Count in 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, 11s, 12s, 25s, 50s, 100s and 1000s

Year 4

Doubling and halving

Find doubles to double 100 and beyond using partitioning e.g. *double 126*

Begin to double amounts of money e.g. £3:50 doubled is £7


Use doubling as a strategy in multiplying by 2, 4 and 8 e.g. 34×4 is double 34 (68) doubled again = 136

Doubling and halving

Find doubles of numbers to 50 using partitioning e.g. double 48

Year 3

Use doubling as a strategy in multiplying by 2 e.g. 18×2 is double 18 = 36

Grouping

 $\label{lem:condition} \textbf{Recognise that multiplication is commutative}$

e.g.
$$4 \times 8 = 8 \times 4$$

Multiply multiples of I0 by I-digit numbers

e.g.
$$30 \times 8 = 240$$

Multiply 'friendly' 2-digit numbers by I-digit numbers

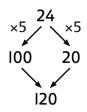
e.g. *13* × 4

Using number facts

Know doubles to double 20

e.g. double 15 is 30

Know doubles of multiples of 5 to 100


e.g. double 85 is 170

Know $\times 2$, $\times 3$, $\times 4$, $\times 5$, $\times 8$, $\times 10$ tables facts

Grouping

Use partitioning to multiply 2-digit numbers by I-digit numbers

Year 4

Multiply multiples of 100 and 1000 by I-digit numbers using tables facts

e.g.
$$400 \times 8 = 3200$$

Multiply near multiples by rounding

e.g.
$$24 \times 19$$
 as $(24 \times 20) - 24 = 456$

Using number facts

Know times-tables up to $I2 \times I2$

×	1	2	3	4	5	6	7	8	q	10	Ш	12
- 1	ı	2	3	4	5	6	7	8	q	10	Ш	12
2	2	4	6	8	10	12	14	16	18	20	П	24
3	3	6	q	12	15	18	21	24	27	30	22	36
4	4	8	12	16	20	24	28	32	36	40	33	48
5	5	10	15	20	25	30	35	40	45	50	44	60
6	6	12	18	24	30	36	42	48	54	60	55	72
7	7	14	21	28	35	42	49	56	63	70	66	84
8	8	16	24	32	40	48	56	64	72	80	77	96
q	q	18	27	36	45	54	63	72	81	90	88	108
10	10	20	30	40	50	60	70	80	90	100	99	120
П	П	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

	C
	0
	\equiv
-	ب
	-
	Ō
	U
	Ξ,
	\equiv
	ᅩ
	_
	کر ح
	5
	C
	മ
	<u>.</u>
3	F
	Liten
	3

Build on partitioning to develop grid multiplication e.g. 23×4

×	20	3	
4	80	12	= 92

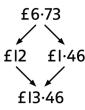
Use grid multiplication to multiply 3-digit numbers by I-digit numbers

×	200	50	3	
6	1200	300	18	= 1518

Year 4

Use a vertical written algorithm (ladder) to multiply 3-digit numbers by I-digit numbers

Use grid multiplication to multiply 2-digit numbers by 2-digit numbers


×	10	6		
40	400	240	=	640
8	80	48	=	128
				768

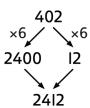
Doub	lina	and	ha	lvina

Double amounts of money using partitioning

e.g. double £6:73

Year 5

Use doubling and halving as a strategy in multiplying by 2, 4, 8, 5 and 20

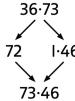

e.g. 58×5 is half of 58×10 (580) = 290

Grouping

Multiply whole numbers and decimals by 10, 100, 1000 e.g. $3.4 \times 100 = 340$

Use partitioning to multiply 'friendly' 2- and 3-digit numbers by I-digit numbers

e.g. 402×6 as 400×6 (2400) and 2×6 (12) = 2412


Use partitioning to multiply decimal numbers by I-digit numbers e.g. 4.5×3 as 4×3 (I2) and 0.5×3 (I·5) = I3·5 Multiply near multiples by rounding

e.g. 32×29 as $(32 \times 30) - 32 = 928$

Doubling and halving

Double decimal numbers with up to 2 places using partitioning e.g. double 36.73

Year 6

Use doubling and halving as strategies in mental multiplication

Grouping

Use partitioning as a strategy in mental multiplication, as appropriate

e.g. 3060 × 4 as 3000 × 4 (12 000) and 60 × 4 (240) = 12 240

e.g. 8.4×8 as 8×8 (64) and 0.4×8 (3.2) = 67.2

Use factors in mental multiplication

e.g. 421 × 6 as 421 × 3 (1263) doubled = 2526

e.q. 3.42×5 as half of $3.42 \times 10 = 17.1$

Multiply decimal numbers using near multiples by rounding

e.g. 4.3×19 as $(4.3 \times 20) - 4.3 = 81.7$

Overview of Strategies and Methods - Multiplication (Draft)

	Year 5	Year 6
Mental Multiplication	Use times-tables facts up to I2 × I2 to multiply multiples of I0/I00 of the multiplier e.g. $4 \times 6 = 24$ so $40 \times 6 = 240$ and $400 \times 6 = 2400$ Use knowledge of factors and multiples in multiplication e.g. 43×6 is double 43×3 e.g. 28×50 is half of 28×100 (2800) = 1400 Know square numbers and cube numbers	Use times-tables facts up to I2 \times I2 in mental multiplication of large numbers or numbers with up to 2 decimal places e.g. $6 \times 4 = 24$ and $0.06 \times 4 = 0.24$
Written Multiplication	Short multiplication of 2-, 3- and 4-digit numbers by I-digit numbers e.g. 435×8 $\begin{array}{r} 435 \\ \times 8 \\ 24 \\ \hline \hline 3480 \end{array}$ Long multiplication of 2-, 3-and 4-digit numbers by 'teen' numbers e.g. 48×16 $\begin{array}{r} 48 \\ \times 16 \\ \hline 480 \\ 28^48 \\ \hline 1 \\ \hline 768 \end{array}$	Short multiplication of 2-, 3- and 4-digit numbers by I-digit numbers e.g. 3743×6 $\begin{array}{r} 3743 \\ \times \\ 6 \\ \underline{421} \\ \underline{22458} \end{array}$ Long multiplication of 2-, 3- and 4-digit numbers by 2-digit numbers e.g. 456×38 $\begin{array}{r} 456 \\ \times \\ \underline{38} \\ 13^{1}6^{1}80 \\ \underline{36^{4}4^{4}8} \\ \underline{11} \\ \underline{17328} \\ \end{array}$

Grid multiplication of numbers with up to 2 decimal places by

I-digit numbers

×		0.3	0.04	
6	6	l·8	0.24	= 8.04

Multiply fractions by I-digit numbers

e.g.
$$\frac{3}{4} \times 6 = \frac{18}{4} = 4\frac{2}{4} = 4\frac{1}{2}$$

NB Grid multiplication provides a default method for ALL children

Year 6

Short multiplication of decimal numbers using \times 100 and \div 100

e.g.
$$13.72 \times 6$$
 as $(1372 \times 6) \div 100 = 82.32$

Short multiplication of money

Grid multiplication of numbers with up to 2 decimal places by I-digit numbers

×	6	0.7	0.06	
4	24	2.8	0.24	= 27.04

Multiply simple pairs of proper fractions

e.g.
$$\frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$$

NB Grid multiplication provides a default method for ALL children

Year 3 Year 4 Counting in steps ('clever' counting) **Counting in steps (sequences)** Count in 2s, 3s, 4s, 5s, 8s and 10s Count in 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, 11s, 12s, 25s, 50s, 100s and 1000s q 25 50 75 125 150 175 225 250 275 Mental Division qq I 2 3 4 5 6 7 8 9 1 10 11 12 13 14 15 16 17 18 19 | 21 22 23 24

	Year 3	Year 4
Division	Doubling and halving Find half of even numbers to 100 using partitioning e.g. find half of 48	Doubling and halving Find half of even numbers to 200 and beyond using partitioning e.g. find half of 258 258 100 29
Mental biv	Use halving as a strategy in dividing by 2 e.g. 36 ÷ 2 is half of 36 = 18 Find half of odd numbers	Begin to halve amounts of money e.g. £9 halved is £4·50
		Use halving as a strategy in dividing by 2, 4 and 8 e.g. 164 ÷ 4 is half of 164 (82) halved again = 41

Grouping

Recognise that division is not commutative

e.g. 16 ÷ 8 does not equal 8 ÷ 16

Relate division to multiplications 'with holes in'

e.g. $_{\sim}$ × 5 = 30 is the same calculation as 30 ÷ 5 = $_{\sim}$ thus we can count in 5s to find the answer

Year 3

Divide multiples of I0 by I-digit numbers

e.g.
$$240 \div 8 = 30$$

Begin to use subtraction of multiples of IO of the divisor to divide numbers above the IOth multiple

e.g.
$$52 \div 4$$
 is 10×4 (40) and 3×4 (12) = 13

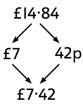
Grouping

Use multiples of IO times the divisor to divide by I-digit numbers above the tables facts

Year 4

e.g. $45 \div 3$ as 10×3 (30) and 5×3 (15)

Divide multiples of I00 by I-digit numbers using division facts e.g. $3200 \div 8 = 400$


	Year 3	Year 4
Mental Division	Using number facts Know half of even numbers to 40 Know half of multiples of 10 to 200 e.g. half of 170 is 85 Know ×2, ×3, ×4, ×5, ×8, ×10 division facts	Using number facts Know times-tables up to I2 × I2 and all related division facts
written bivision	Perform divisions just above the I0th multiple using written jottings, understanding how to give a remainder as a whole number Use division facts to find unit and simple non-unit fractions of amounts within the times-tables e.g. $\frac{3}{4}$ of 48 is 3 × (48 ÷ 8) = 36	Use a written version of a mental method to divide 2- and 3-digit numbers by I-digit numbers e.g. $86 \div 3$ as 20×3 (60) and 8×3 (24), remainder 2 $ \begin{array}{c} $

Doubling and halving

Halve amounts of money using partitioning e.g. half of £14·84 is half of £14 (£7) plus half of 84p (42p)

Year 5

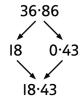
Use doubling and halving as a strategy in dividing by 2, 4, 8, 5 and 20 e.g. $II5 \div 5$ as double II5 (230) $\div I0 = 23$

Grouping

Divide numbers by 10, 100, 1000 to obtain decimal answers with up to 3 decimal places

e.g.
$$340 \div 100 = 3.4$$

Use the I0th, 20th, 30th ... multiple of the divisor to divide 'friendly' 2- and 3-digit numbers by I-digit numbers

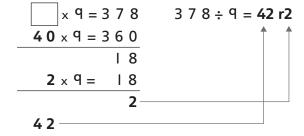

e.g.
$$186 \div 6$$
 as 30×6 (180) and 1×6 (6)

$$\times 6 = 186$$
 $30 \times 6 = 180$
 6
 $1 \times 6 = 6$
 0
 31

Doubling and halving

Halve decimal numbers with up to 2 places using partitioning e.g. half of 36·86 is half of 36 (18) plus half of 0·86 (0·43)

Year 6



Use doubling and halving as strategies in mental division

Grouping

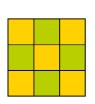
Use the 10th, 20th, 30th, ... or 100th, 200th, 300th ... multiples of the divisor to divide large numbers

e.g. 378
$$\div$$
 9 as 40 \times 9 (360) and 2 \times 9 (18), remainder 2

Use tests for divisibility

e.g. 135 divides by 3, as I + 3 + 5 = 9 and 9 is in the $\times 3$ table

abacus


Using number facts Use division facts from

Use division facts from the times-tables up to I2 \times I2 to divide multiples of powers of I0 of the divisor

Year 5

e.g. 3600 ÷ 9 using 36 ÷ 9

Know square numbers and cube numbers

Using number facts

Use division facts from the times-tables up to I2 \times I2 to divide decimal numbers by I-digit numbers

Year 6

e.g.
$$1.17 \div 3$$
 is $\frac{1}{100}$ of $117 \div 3$ (39)

Know tests of divisibility for numbers divisible by 2, 3, 4, 5, 9, 10 and 25

Use a written version of a mental strategy to divide 3-digit numbers by I-digit numbers

e.g. $326 \div 6$ as 50×6 (300) and 4×6 (24), remainder 2

Short division of 3- and 4-digit numbers by I-digit numbers e.g. $139 \div 3$

Long division of 3- and 4-digit numbers by 2-digit numbers e.g. $4176 \div 13$

	Year 5	Year 6
bivision	Short division of 3- and 4-digit numbers by I-digit numbers e.g. <i>I39 ÷ 3</i> 4 6 r I 3 1 3 9	Give remainders as whole numbers, fractions or decimals Use place value to divide I- and 2-place decimals by numbers ≤ I2 e.g. 3.65 ÷ 5 as (365 ÷ 5) ÷ I00 = 0.73 Divide proper fractions by whole numbers
written	Give remainders as whole numbers or as fractions Find unit and non-unit fractions of large amounts e.g. $\frac{3}{5}$ of 265 is $3 \times (265 \div 5) = 159$ Turn improper fractions into mixed numbers and vice versa	